Exercise 22

Find the intersection of the two planes with equations $3(x-1)+2 y+(z+1)=0$ and $(x-1)+4 y-(z+1)=0$.

Solution

The intersection for two planes is a straight line, which can be parameterized as

$$
\mathbf{y}(t)=\mathbf{m} t+\mathbf{b}
$$

where \mathbf{m} is the direction vector and \mathbf{b} is the position vector for any point on the line. The normal vectors to the given planes are obtained from the coefficients of x, y, and $z:(3,2,1)$ and $(1,4,-1)$. Take the cross product of these two to find the direction vector of the line.
$\mathbf{m}=(3,2,1) \times(1,4,-1)=\left|\begin{array}{ccc}\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ 3 & 2 & 1 \\ 1 & 4 & -1\end{array}\right|=(-2-4) \hat{\mathbf{x}}-(-3-1) \hat{\mathbf{y}}+(12-2) \hat{\mathbf{z}}=-6 \hat{\mathbf{x}}+4 \hat{\mathbf{y}}+10 \hat{\mathbf{z}}=(-6,4,10)$
All that's left is to find a point common to both planes.

$$
\left.\begin{array}{r}
3(x-1)+2 y+(z+1)=0 \\
(x-1)+4 y-(z+1)=0
\end{array}\right\}
$$

Choose $x=1, y=0$, and $z=-1$, for example. Then $\mathbf{b}=(1,0,-1)$, and the line is

$$
\begin{aligned}
\mathbf{y}(t) & =\mathbf{m} t+\mathbf{b} \\
& =(-6,4,10) t+(1,0,-1) \\
& =(-6 t+1,4 t, 10 t-1) .
\end{aligned}
$$

In green is $3(x-1)+2 y+(z+1)=0$, and in blue is $(x-1)+4 y-(z+1)=0$.

